Upper bounds on the upper signed total domination number of graphs
نویسندگان
چکیده
منابع مشابه
Some Upper Bounds for Signed Star Domination Number of Graphs
Let G be a graph with the vertex set V (G) and edge set E(G). A function f : E(G) → {−1,+1} is said to be a signed star dominating function ofG if ∑ e∈EG(v) f(e) ≥ 1, for every v ∈ V (G), where EG(v) = {uv ∈ E(G) |u ∈ V (G)}. The minimum of the values of ∑ e∈E(G) f(e), taken over all signed star dominating functions f on G is called the signed star domination number of G and is denoted by γss(G...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملUpper Bounds on the Total Domination Number
A total dominating set of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set in G. In this paper, we present several upper bounds on the total domination number in terms of the minimum degree, diameter, girth and order.
متن کاملNew bounds on the signed total domination number of graphs
In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turán [8], we present a sharp lower bound on Kr+1-free graphs for r ≥ 2. Applying the concept of total limited packing we bound the signed total domination number of G with δ(G) ≥ 3 from above by n−2b 2ρo(G)+δ−3...
متن کاملUpper bounds on the paired-domination number
A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and the subgraph induced by S contains a perfect matching. The minimum cardinality of a paired-dominating set of G is the paireddomination number of G, denoted by γpr (G). In this work, we present several upper bounds on the paired-domination number in terms of the maximum degre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2009
ISSN: 0166-218X
DOI: 10.1016/j.dam.2008.04.005